Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(8)2022 08 05.
Article in English | MEDLINE | ID: covidwho-2024284

ABSTRACT

The HIV-1 envelope glycoprotein (Env) is an essential structural component of the virus, serving as the receptor-binding protein and principal neutralizing determinant. Env trimers are incorporated into developing particles at the plasma membrane of infected cells. Incorporation of HIV-1 Env into particles in T cells and macrophages is regulated by the long Env cytoplasmic tail (CT) and the matrix region of Gag. The CT incorporates motifs that interact with cellular factors involved in endosomal trafficking. Env follows an unusual pathway to arrive at the site of particle assembly, first traversing the secretory pathway to the plasma membrane (PM), then undergoing endocytosis, followed by directed sorting to the site of particle assembly on the PM. Many aspects of Env trafficking remain to be defined, including the sequential events that occur following endocytosis, leading to productive recycling and particle incorporation. This review focuses on the host factors and pathways involved in Env trafficking, and discusses leading models of Env incorporation into particles.


Subject(s)
HIV-1 , Carrier Proteins/metabolism , HIV-1/physiology , Protein Transport , Virus Assembly , env Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism
2.
Sci Rep ; 12(1): 10027, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1921705

ABSTRACT

High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/metabolism , Calreticulin/genetics , Calreticulin/metabolism , HIV Antibodies/metabolism , HIV-1/genetics , Mammals/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/metabolism
3.
STAR Protoc ; 1(3): 100209, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-1386743

ABSTRACT

We describe the production of single-cycle (sc) and replication-competent recombinant vesicular stomatitis viruses (rcVSVs) displaying heterologous envelope glycoproteins (Envs) on their surface. We prepare scVSVs by transiently expressing HIV-1 Envs or SARS-CoV-2 spike followed by infection of the cells with scVSV particles, which do not carry the vsv-g gene. To prepare rcVSVs, we replace the vsv-g with a specific env-encoding gene, transfect cells with multiple plasmids for production of the genomic RNA and viral proteins, and rescue replication-competent viruses.


Subject(s)
Recombinant Proteins , Spike Glycoprotein, Coronavirus , Vesicular Stomatitis/genetics , env Gene Products, Human Immunodeficiency Virus , Animals , COVID-19/virology , Cell Line , Cricetinae , HIV-1/genetics , Humans , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL